Kyalami Physiotherapy & Biokinetics Kyalami Physiotherapy & Biokinetics
  CONTACT US  
 
PHYSIOTHERAPY
BIOKINETICS
PILATES
BOOT CAMP
 
Join Us On Facebook
CYCLING & BIKE SETUP
FUNCTIONAL MEDICINE
PHOTO GALLERY
ARTICLES
 
Watch Us On YouTube
 
<< Previous << First ... Last >> Next >>

Knee Injuries

Knee injuries can range from mild to severe. Some of the less severe, yet still painful and functionally limiting, knee problems are runner's knee (pain or tenderness close to or under the knee cap at the front or side of the knee), iliotibial band syndrome (pain on the outer side of the knee), and tendinitis, also called tendinosis (marked by degeneration within a tendon, usually where it joins the bone).

More severe injuries include bone bruises or damage to the cartilage or ligaments. There are two types of cartilage in the knee. One is the meniscus, a crescent-shaped disc that absorbs shock between the thigh (femur) and lower leg bones (tibia and fibula). The other is a surface-coating (or articular) cartilage. It covers the ends of the bones where they meet, allowing them to glide against one another. The four major ligaments that support the knee are the anterior cruciate ligament (ACL), theposterior cruciate ligament (PCL), the medial collateral ligament (MCL), and the lateral collateral ligament (LCL).

While there are four bones that come together at the knee, only the femur (thigh bone) and the tibia (shin bone) form the joint itself. The head of the fibula (strut bone on the outside of the leg) provides some stability, and the patella (kneecap) helps with joint and muscle function. Movement and weight-bearing occur where the ends of the femur called the femoral condyles match up with the top flat surfaces of the tibia (tibial plateaus).

There are two major muscle groups that are balanced and allow movement of the knee joint. When the quadriceps muscles on the front of the thigh contract, the knee extends or straightens. The hamstring muscles on the back of the thigh flex or bend the knee when they contract. The muscles cross the knee joint and are attached to the tibia by tendons. The quadriceps tendon contains the patella within it. The patella allows the quadriceps muscle/tendon unit to work more efficiently. This tendon is renamed the patellar tendon in the area below the kneecap to its attachment to the tibia.

The stability of the knee joint is maintained by four ligaments, thick bands of tissue that stabilize the joint. The medial collateral ligament (MCL) and lateral collateral ligament (LCL) are on the sides of the knee and prevent the joint from sliding sideways. The anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) form an "X" on the inside of the knee and prevent the knee from sliding back and forth. These limitations on knee movement allow the knee to concentrate the forces of the muscles on flexion and extension.

Inside the knee, there are two shock-absorbing pieces of cartilage called menisci (singular meniscus) that sit on the top surface of the tibia. The menisci allow the femoral condyle to move on the tibial surface without friction, preventing the bones from rubbing on each other. Without the menisci, the friction of bone on bone would cause inflammation, or arthritis.

Bursas surround the knee joint and are fluid-filled sacs that cushion the knee during its range of motion. In the front of the knee, there is a bursa between the skin and the kneecap called the prepatellar bursa and another above the kneecap called thesuprapatellar bursa (supra=above).

Each part of the anatomy needs to function properly for the knee to work. Acute injury or trauma as well as chronic overuse both cause inflammation and its accompanying symptoms of pain, swelling, redness, and warmth.
 
<< Previous << First ... Last >> Next >>
Sitemap